THE PREPARATION AND THE CONFICURATION OF SOITE SRERNOISOHESRIC
CARANTLAMDIBS
W. Cocker, A.C. Pratt and P.V.R. Shannon

University Chemical Laboratory, Trinity College, Dublin, 2, Ireland
(Received in UK '22 August 1967)
In view of a recent publication ${ }^{1}$ on the configuration and conformation of (+)-trans-caranyl-cis-2-amine (I) ${ }^{2,3}$ we wish to report our preparations of the six stereoisomeric caranylamines (II-VII) by routes summarised in the chart belo:.

1

11

III

iv

V

Vi

Vil

The preparation of (-)-trans-caranyl-ais-2-anine (II) wes aciiceded essentially by previously used methods, $1,2,3$ namely by reduction of the oxime or (-) trans-caran-2-one (VIII) ${ }^{4}$ with sodium in ethanol. A similar procedure with the oxime or (-)-cis-caran-2-ono (IX) ${ }^{4}$ gave (-)-cis-caranyl-trans-2-anine (III). (+)-cis-Garanyl-cis-t-anine (IV) mas prepared by tmo routes. (a) The tosylate of (-)-cis-caran-trans-4-01 ($X)^{4}$ wos converted to the inverted azide which was reduced writh lithium aluminium hydmide to the amine (IV). (b) The oxime of (-)-cis-caran-limene $(X I)^{4}$ was hyürgenated over Adens catalyst giving medominantly the same amine (IV). The epimeric (-)-cis-caranyl-trans-l:anine (V) was obtainod from the oxime of (-)-cis-caran-l:one $(X I)^{4}$ by reduction with sodium in ethonol. This amine (V) :\%s also obtained by the aminative hydroboronation of (+)-car-3-ene (XII). 5 (+)-cis-Caranyl-cis-5-amine (VI) was prepared by reduction of the oxime of (+)-cis-caran-5-one (KIIT) ${ }^{6}$ with socitun in ethenol. The epimer (-)-ais-caranyl-trans-5manine (VII) wis formed as the matn product of the amination of the

mixture of cis-caranyl-trans-borenes (XIV) derived by thermal equilibration at 100° of cis-caranyl-trans-4-borane. ${ }^{6}$

Each amine (II-VII) was purified through an appropriate salt.
Detailed ovidence for the configurations and conformations of the amines (II-VII) will be given in a paper now being prepared, but attention may here be drawn to a companison of the optical rotations of the amines and the correspondinf alcohols (Table)

TABLE

Comparison of the Optical Rotations of the Amines (II) - (VII) and the Correspondine Alcohols

There is good correletion between the option rotations of the above anines and the correspondine alcokols. The discrepancy in the case of the emine (IV) is explained by a partial conformational change for which supporting evidence will be given later. The large discrepancy in the values recently published for the (+)-carenylamine (I), $[\sim]_{D}{ }^{20}+60^{\circ}$, end the corresponaing alcohol (XV), $[\alpha]_{0}^{20}+18.9^{\circ}$, is undoubtedly due to the error (pointed out by Acharya and Brorm^{7}) in the assignment ${ }^{1}$ of the coufiguration of this alcohol. Its configuration should be emended to (NVI). ${ }^{7}$

$X V$

XVI

XYII

The alcohol (XVII), $[\alpha]_{D}{ }^{26}-60.9^{\circ}$, was obtained by Acherya and Brown ${ }^{7}$ by the reduction of (-)-trans-caran-2-one (VIII) with lithium aluminium hydride. In a parallel study me find that (XVII) has $[\alpha]_{D}^{20}-54^{\circ}$. These values are clearly in good agreoment with those of our corresponding amine (II), $[\alpha]_{D}{ }^{20}-58.5^{\circ}$, and are compatible with the rotation, $[\alpha]_{D}{ }^{20}+60^{\circ}$,

A more detailed account of the preparation of the amines (II-VII) mich includes evidence for their probable conformations is now being propared. Studies on their deaminetion are in progress.

RRFERETCES

1. H. Kuczyhiski, K. Piatkowski, A. Hendrich and A. Kubik, Tetrahedron Letters, 2371 (1967).
2. A. Baeyer, Ber., 27, 3485 (1894); 28, 639 (1895).
3. K.N. Menon and J.I. Simonsen, Je Inde Inste. Sci., 10A, 1 (1927).
4. W. Cocker, P.V.R. Shannon and P.A. Staniland, J. Chem. Soc. [C], 485 (1967).
5. M.W. Rathke, N. Inoue, K.R. Varma and H.C. Brom, J. Amer. Cheme Soc., 88, 2070 (206).
6. W. Cocker, P.V.R. Shannon and P.A. Staniland, Jo Chem. Soc. [C], 915 (1967).
7. S.P. Acharya and H.C. Brown, J. Aner. Chem. Soc., 89, 1925 (1967).
8. W. Cocker, D.P. Hanna and P.V.R. Shannon, In Press.
